วันศุกร์ที่ 26 มีนาคม พ.ศ. 2564

ผลงานวิชาคณิตศาสตร์


 ความรู้ต่างๆวิชาคณิต​ศาสตร์

ประวัติฟีโอนักซี


 เลโอนาร์โดแห่งปีซามีชื่ออื่น ๆ เช่น เลโอนาร์โด ปีซาโน (Leonardo Pisano) เลโอนาร์โด ฟีโบนัชชี (Leonardo Fibonacci) หรือรู้กันในชื่อสั้น ๆ ว่า ฟีโบนัชชี (Fibonacci) (มักจะสะกดผิดว่า ฟีโบนักชี หรือ ฟิโบนักชี) เป็นนักคณิตศาสตร์ชาวอิตาลี มีชื่อเสียงโด่งดังที่สุดจากการค้นพบจำนวนฟีโบนัชชี และบทบาทในการเผยแพร่การเขียนและวิธีการคำนวณระบบจำนวนฐานสิบที่ให้ค่าตามหลักแบบอาราบิก (Arabic positional decimal system) ที่ใช้กันในปัจจุบัน หลายคนยกย่องว่าเขาเป็นนักคณิตศาสตร์ที่เก่งที่สุด
ในยุคกลาง


ประวัติ

    กูกลีเอลโม วิลเลียม (Guglielmo William) บิดาของฟีโบนัชชีมีฉายาว่า โบนัชโช (Bonaccio แปลว่า 'อารมณ์ดี' หรือ 'ง่าย ๆ') เลโอนาร์โดได้รับชื่อเล่นหลังจากเสียชีวิตแล้วว่า ฟีโบนัชชี (Fibonacci หรือ บุตรชายของโบนัชโช) วิลเลียมทำหน้าที่กำกับการค้าที่เมืองบูเกีย (Bugia) ซึ่งเป็นเมืองท่าอยู่บริเวณแอฟริกาเหนือ (บางแหล่งว่า เขาเป็นกงสุลจากเมืองปีซา) เลโอนาร์โดเดินทางมาช่วยงานบิดาของเขาตั้งแต่ยังเด็ก และที่นี่เองที่เขาได้เรียนรู้เกี่ยวกับระบบเลขอาราบิก
    หลังจากที่ฟีโบนัชชีได้เห็นว่าการคำนวณด้วยตัวเลขอารบิกนั้นง่ายและมีประสิทธิภาพกว่าตัวเลขโรมัน เขาได้เดินทางท่องไปในย่านคาบสมุทรเมดิเตอร์เรเนียนเพื่อทำการศึกษากับนักคณิตศาสตร์ชั้นนำชาวอาหรับในยุคนั้น และได้เดินทางกลับมาเมื่อประมาณปี ค.ศ. 1200 และ ปี ค.ศ. 1202 เมื่อเขาอายุได้ 32 ปี เขาได้เผยแพร่สิ่งที่เขาศึกษามาในหนังสือ ลิเบอร์ อะบาชี (Liber Abaci) หรือ คัมภีร์แห่งการคำนวณ


    เลโอนาร์โดได้รับเกียรติให้เป็นพระราชอาคันตุกะของจักรพรรดิเฟรดริกที่ 2 (Emperor Frederick II) ผู้ทรงโปรดปรานคณิตศาสตร์และวิทยาศาสตร์ ในปี ค.ศ. 1240 สาธารณรัฐปีซาได้ให้เกียรติกับเลโอนาร์โด ภายใต้ชื่ออีกชื่อหนึ่งคือ เลโอนาร์โด บีกอลโล (Bigollo มีความหมายว่า 'ไม่มีประโยชน์' หรือ 'นักพเนจร') โดยให้เงินเดือนแก่เขานับจากนั้น

ลิเบอร์ อาบาชี
                                                      
     ในหนังสือ "ลีเบอร์ อาบาชี" (Liber Abaci) ขาได้แนะนำสิ่งที่เรียกว่าวิธีการของชาวอินเดีย หรือ เป็นที่รู้จักกันในปัจจุบันในนามของตัวเลขอารบิก ดังนี้

    "...หลังจากพ่อของข้าได้รับแต่งตั้งจากทางบ้านเมืองของท่าน ให้เป็นข้าราชการศุลกากรของรัฐแห่งเมืองบูเกีย ที่ทำงานเกี่ยวข้องกับพ่อค้าจากปีซา ท่านได้เข้ามารับตำแหน่ง และได้เห็นประโยชน์และความสะดวกในอนาคตของการคำนวณวิธีนี้ จึงได้ให้ข้ามาอยู่กับท่านตั้งแต่เด็ก และต้องการให้ข้าเรียนรู้มันสักวันหนึ่ง
    "หลังจากที่ข้าได้รู้จักตัวเลขเก้าตัวของชาวฮินดูจากที่นั่น ความมหัศจรรย์จากการเรียนการสอนศิลปวิทยาการและความรู้สาขานี้ดึงดูดใจข้ามากกว่าศาสตร์แขนงใด และข้าทราบว่าศาสตร์นี้ได้รับการศึกษาอย่างหมดจดทุกแง่มุมใน อียิปต์ ซีเรีย กรีซ ซิซิลี และ โปรเวนซ์ (Provence) ด้วยวิธีการอันหลากหลายขณะที่ข้าประกอบการงานอยู่
    "ข้าได้ศึกษาต่อในเบื้องลึก และได้ทราบถึงข้อดีและข้อเสียต่าง ๆ แต่สิ่งต่าง ๆ ที่ข้ารู้ และ วิธีการคำนวณมากมาย หรือแม้แต่ศาสตร์ของพีทากอรัส (Pythagoras) นั้น ข้าเห็นว่าแทบจะบกพร่องเมื่อเทียบกับวิธีของชาวฮินดู ดังนั้นข้าจึงยึดมั่นกับวิธีการของชาวฮินดูมากขึ้น และอุทิศตัวในการศึกษาวิธีนี้อย่างแข็งขันขึ้น โดยที่ข้าได้แทรกความเข้าใจของข้าบางประการลงไป รวมทั้งสิ่งดี ๆ จากศาสตร์เรขาคณิตของยุคลิด (Euclid) ข้าได้พากเพียรเขียนจนได้หนังสือสิบห้าบทให้เข้าใจได้ง่ายเท่าที่ข้าสามารถจะทำได้

    "สิ่งต่าง ๆ เกือบทั้งหมดที่ข้าสอน ข้าได้แสดงมันพร้อมกับบทพิสูจน์ที่ถูกต้อง เพื่อให้ผู้ที่ต้องการหาความรู้เพิ่มเติม โดยมีพื้นจากวิธีการเก่า ๆ ก่อนหน้า ให้สามารถเรียนรู้ได้ ถ้าบังเอิญข้าได้ละเว้นสิ่งใดอย่างไม่เหมาะสมและไม่จำเป็น ข้าต้องขออภัย เนื่องจากไม่มีใครที่จะไร้ที่ติ และทราบการณ์ได้ทุกอย่าง ตัวเลขของอินเดียทั้งเก้าคือ 9 8 7 6 5 4 3 2 1 ด้วยตัวเลขทั้งเก้านี้ พร้อมด้วยสัญลักษณ์ 0 เราสามารถเขียนจำนวนใดก็ได้"

    ในหนังสือเล่มนี้ เขาได้แสดงความสำคัญของระบบจำนวนใหม่นี้ที่มีประโยชน์ในการใช้ทำบัญชีการค้า แปลงหน่วยการชั่งการวัด การคำนวณดอกเบี้ย การแลกเปลี่ยนเงินตรา และ การประยุกต์ใช้อื่นอีกมากมาย หนังสือเล่มนี้ได้รับการต้อนรับอย่างกว้างขวางจากชาวยุโรปที่มีการศึกษา และมีอิทธิพลอย่างล้ำลึกต่อแนวความคิดของชาวยุโรป แม้ว่าระบบเลขฐานสิบนี้จะยังไม่ได้รับการใช้อย่างกว้างขวางจนกระทั่งมีนวัตกรรมของการพิมพ์ในอีกเกือบสามร้อยปีต่อมา

    นอกจากนี้ เขายังค้นพบลำดับฟีโบนักซี คือ 1 1 2 3 5 8 13 21 โดยที่เลขสองตัวข้างหน้าบวกกันกลายมาเป็นผลลัพธ์ ของอีกตัวหนึ่งทางด้านขวา เช่น 2+3 =5 ไปเรื่อยๆ อย่างเช่น ในหนังสือ รหัสลับดาวินซี ที่ โซนิแยร์ทิ้งไว้ให้โรเบิร์ต แลงดอน และ โซเฟีย ที่ปรากฏในวรรณกรรม รหัสลับดาวินชี


ผลงานสำคัญ

• ลำดับฟิโบนักชี (Fibonacci sequence) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55,…)

• Liber abaci เป็นตำราเกี่ยวกับเลขคณิตและพีชคณิต แนะนำระบบเลขฐานสิบที่มีค่าประจำหลัก และการใช้ตัวเลขฮินดูอารบิก

• Practica geometriae รวบรวมปัญหาเกี่ยวกับเรขาคณิต

• Liber quadratorum เป็นตำราทฤษฎีจำนวน


        จำนวนฟีโบนัชชี หรือ เลขฟีโบนัชชี (Fibonacci number) คือจำนวนต่าง ๆ ที่อยู่ในลำดับจำนวนเต็มดังต่อไปนี้


0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946 ...


    โดยมีนิยามของความสัมพันธ์ว่า จำนวนถัดไปเท่ากับผลบวกของจำนวนสองจำนวนก่อนหน้า และสองจำนวนแรกก็คือ 0 และ 1 ตามลำดับ และลำดับของจำนวนดังกล่าวก็จะเรียกว่า ลำดับฟีโบนัชชี (อังกฤษ: Fibonacci sequence)

    หากเขียนให้อยู่ในรูปของสัญลักษณ์ ลำดับ Fn ของจำนวนฟีโบนัชชีนิยามขึ้นด้วยความสัมพันธ์เวียนเกิดดังนี้
Fn = Fn-1 + Fn-2} โดยกำหนดค่าเริ่มแรกให้ F0 = 0 และ F1 = 1

    ชื่อของจำนวนฟีโบนัชชีตั้งขึ้นเพื่อเป็นเกียรติแก่นักคณิตศาสตร์ชาวอิตาลีชื่อ เลโอนาร์โดแห่งปีซา (Leonardo de Pisa) ซึ่งเป็นที่รู้จักกันในนามฟีโบนัชชี (Fibonacci) ผู้ค้นพบจำนวนฟีโบนัชชีในต้นศตวรรษที่ 13

                                                                    
การจัดเรียงสี่เหลี่ยมจัตุรัสที่มีความยาวด้านเท่ากับจำนวนฟีโบนัชชี


ลำดับฟิโบนัชชีในธรรมชาติ

    สิ่งที่ปรากฏตามธรรมชาติมิได้มีแต่รูปร่างง่ายๆ เท่านั้น บางอย่างมีรูปร่างที่มีแบบแผนทางคณิตศาสตร์ที่ยุ่งยากขึ้นไปอีก ตัวอย่างที่น่าสนใจของธรรมชาติที่เป็นไปตามกฎเกณฑ์ของ คณิตศาสตร์ชั้นสูง ได้แก่ เส้นโค้งก้นหอย ซึ่งมีคุณสมบัติว่า ถ้าลากเส้นตรงจากจุดหลายของเกลียวข้างในสุดไปตัดกับเส้นโค้งแล้ว มุมที่เกิดจากเส้นตรงนั้นกับเส้นสัมผัสกับเส้นโค้ง ณ จุดตัดจะเท่ากันเสมอดังรูป มุม A = มุม B = มุม C เส้นโคังที่มีลักษณะเป็นก้นหอยจะพบได้ในหอยบางชนิด เช่น หอยทาก

ลำดับฟิโบนัชชีในธรรมชาติ

        นอกจากนี้ยังมีความโค้งของงาช้าง ความโค้งของเกสรดอกทานตะวัน ตาสับปะรดและตาลูกสน ก็มีลักษณะคล้ายส่วนของเส้นโค้งก้นหอยด้วย ยังมีเรื่องที่น่าสนใจในธรรมชาติที่เกี่ยวข้องกับคณิตศาสตร์อีก จากการศึกษาเส้นโค้งของตาลูกสน ตาสับปะรด และเกสรดอกทานตะวัน จะเห็นว่าเส้นโค้งที่หมุนตามเข็มนาฬิกาของตาลูกสนมีจำนวน 5 เส้น และหมุนทวนเข็มนาฬิกามีจำนวน 3 เส้น หรืออาจกล่าวได้ว่า จำนวนเส้นโค้งสองแบบมีอัตราส่วนเป็น 5 ต่อ 8 สำหรับตาสับปะรด เส้นโค้งตามเข็มนาฬิกาและทวนเข็มนาฬิกา มีอัตราส่วนเป็น 8 ต่อ 13 เส้นโค้งที่เกิดจากเกสรดอกทานตะวันตามเข็มนาฬิกา และทวนเข็มนาฬิกามีอัตราส่วนเป็น 21 ต่อ 34 ปรากฏการณ์นี้เป็นไปตามกฎเกณฑ์ของเลขฟีโบนัชชี

การนำไปใช้

        จำนวนฟีโบนัชชีมีความสำคัญในการวิเคราะห์ประสิทธิภาพของยูคลีเดียนอัลกอริทึมซึ่งใช้ในการหาตัวหารร่วมมากของจำนวนเต็มสองจำนวน โดยยูคลิเดียนอัลกอริทึมจะทำงานได้ช้าที่สุดถ้าข้อมูลเข้าเป็นจำนวนฟีโบนัชชีสองตัวที่ติดกัน

        ยูริ มาทิยาเซวิช พิสูจน์ได้ว่าจำนวนฟีโบนัชชีมีนิยามในรูปของผลเฉลยของสมการไดโอแฟนไทน์ ซึ่งความจริงข้อนี้นำไปสู่การแก้ปัญหาข้อที่ 10 ของฮิลแบร์ที่จำนวนเต็มทุกจำนวนสามารถเขียนอยู่ในรูปของผลบวกของจำนวนฟีโบนัชชีที่ไม่ติดกินได้เพียงแบบเดียวเท่านั้น ความจริงข้อนี้เป็นที่รู้จักกันในนามทฤษฎีบทของเซคเคนดอร์ฟ การเขียนจำนวนเต็มในรูปดังกล่าวเรียกว่า การนำเสนอแบบเซคเคนดอร์ฟ
    
        จำนวนฟีโบนัชชีถูกใช้กำหนดความยาวของส่วนประกอบต่างๆ ของงานศิลปะ และถูกใช้ในการเทียบเสียงเครื่องดนตรี ผลงานเพลงที่มีความเกี่ยวข้องกับจำนวนฟีโบนัชชี ได้แก่ เพลงสำหรับเครื่องสาย เครื่องประกอบจังหวะ และซีเลสตา ของ เบลา บาท็อก, และเพลงแลเทอราทัส ของวงทูล ซึ่งมีจำนวนพยางค์ในวรรคของเนื้อร้องเท่ากับจำนวนฟีโบนัชชี ("Black/Then/White are/All I see/In my infancy/Red and yellow then came to be")


สี่เหลี่ยมผื้นผ้าทองคำ (Golden Rectangle)

        ถ้าทำการวาดรูปสี่เหลี่ยมพื้นผ้า 1 รูปในอัตราสัดส่วนทองคำคือ 1 : 1.6 จากนั้นแบ่งรูปสี่เหลี่ยมพื้นผ้าเป็น 2 รูปโดยรูปที่ 1 เป็นรูปสี่เหลื่ยมจัตตุรัส อีกรูปจะได้รูปสี่เหลี่ยมพื้นผ้า 1 รูป และให้ทำการแบ่งในรูปสี่เหลี่ยมพื้นผ้ารูปที่ 2 ในลักษณะเหมือนขั้นตอนที่ผ่านมาจะพบว่าจะสามารถแบ่งพื้่นที่สี่เหลี่ยมพื้นผ้า 1:1.6 นี้ได้จนไม่มีจุดสิ้นสุด ดังรูป




ไม่มีความคิดเห็น:

แสดงความคิดเห็น

เเบบทดสอบอาหาร31033 31036

เเบบทดสอบเกี่ยวกับอาหาร